
Permutation Game

You are given a connected graph of vertices and edges. The -th edge of the graph is .

You are also given a permutation of length , where .

Define the score of the permutation as the number of indices such that .

Two players, Alice and Bob will play a game with the permutation. The game will last for at most turns. In each turn, the following happens:

1. Alice decides to end the game, and the game stops.
2. Alice chooses distinct indices . Note that we do not require .
3. Bob choose an index of the edges of the graph and swaps and .

Alice wishes to maximize the score of the permutation while Bob wishes to minimize the score of the permutation.

This is an interactive problem.

You will play as Alice and the grader will play as Bob.

You will need to determine the maximum score of the permutation if both players play optimally and then play the game with Bob to achieve at least that
maximum score after some turns.

Iteraction Format

You will have the implement the function Alice with the following function signature:

int alice(int M, int E, vector<int> U, vector<int> V, int N, vector<int> P)

Here the variables are defined as follows:

 is the number of vertices of the graph
 is the number of edges of the graph

The vectors and describes the edges of . The -th edge of graph connects vertices V_i$
 is the length of the permutation.

The vector describes the given permutation.

Constraints:

G m e i G ​ ​(u , v)i i

P n m ≤ n

P i ​P =i i

10100

​ ​ ​i , i , … , i0 1 m−1 ​i <0 ​i <1 ​… < im−1

0 ≤ j < e ​

​

​

Piuj ​

​

​

Pivj

M G

E G

U V G i G ​U andi

N

​ ​

P

2 ≤ M ≤ 400
M − 1 ≤ E ≤ 400
0 ≤ U ,V <i i M

​

M ≤ N ≤ 400
0 ≤ P <i N

P

Here the vector denotes the indices that Alice chooses to perform her operation on.

It should satisfy the following constraints:

 contains elements

All elements of are distinct

The function Bob will return a single integer that satisfies .

This means that Bob swaps and .

To get full score, Alice should call the function Bob until the score of the permutation becomes at least the optimal score.

Note that Alice's strategy should work no matter what moves Bob makes, including if Bob makes "unoptimal" moves.

Here, we only require that the final score is at least the optimal score because Bob is allowed to make unoptimal moves.

Sample

Let the original call to Alice have:

The graph is as follows:

0

3

5

4

1

2

0 12

3

4

Given the constraints above, we can prove that the final score under optimal play is .

Alice will make the following moves:

Argument of to Bob Return Value of Bob after the swap by Bob

Note that the moves of Alice and Bob above are not necessaily making the optimal moves. The moves shown are purely for the sake of demonstration.

After Alice has performed all the moves above, the score of the permutation is .

The function Alice will finally return , the maximum score achieveable under optimal play from both parties.

Note that even though Alice has achieved a score of by playing with Bob, you will get points if the return value of Alice was instead of .

I

I m

0 ≤ I ​ <j n

I

j 0 ≤ j < m

P ​I ​U ​j
P ​I ​V ​j

M = 5
E = 6
U = [4, 0, 3, 4, 4, 2]
V = [2, 2, 0, 0, 4, 3]
N = 10
P = [8, 2, 7, 6, 1, 5, 0, 9, 3, 4]

1

4

I P

[3, 1, 5, 2, 0] 5 P = [8, 2, 5, 6, 1, 7, 0, 9, 3, 4]

[9, 3, 7, 2, 1] 0 P = [8, 9, 5, 6, 1, 7, 0, 2, 3, 4]

[5, 6, 7, 8, 9] 1 P = [8, 9, 5, 6, 1, 2, 0, 7, 3, 4]

[7, 5, 2, 3, 6] 5 P = [8, 9, 2, 6, 1, 5, 0, 7, 3, 4]

2

1

2 0 2 1

Subtasks and Scoring Suggestions

Subtasks will be based on graph types. The following are the suggested graph types for the subtasks:

 (very easy)
 and and (medium)

 and and and (hard)
 and and and (hard)
 and and (very hard)

 (medium)
 (very hard)
 (very easy)

No restriction on (very hard)

Then in each subtask, there are two scoreable parts:

1. The function Alice returns the correct value.
2. The participant will make calls to Bob until the score of the permutation is at least the optimal score. Suppose the participant makes calls. Then

there can be partial scoring based on . Currently, we have a solution with . We have proven that below. I expect there
to be a subtask where is big enough to allow any reasonable solution to pass.

It is possible to have partial scoring also on how close to the optimal score the participant is able to get in part 2, but I that it would be hard to kill silly
solution in these types of problems. And the metric for such a scoring would be quite hard to write down.

Also, the participant will not have to play as Bob. This is because I believe constructing the strategy for Alice is much harder than constructing the strategy
for Bob. Requiring participants to implement Bob's strategy would make the implementation much more tedious, which is undesirable as the entire solution
is quite tedious already, especially if a full score requires . Yet, removing the construction of Alice's moves would make the problem reward
guesswork too much.

Ideally, the limits should be set such that code that takes to make a move per turn will pass, it does not make sense to force the contestant to code
an algorithm that only requires per move.

Motivation of the Problem

This problem was created when brainstorming last minute ideas for a codeforces round.

The original idea was for Alice to specify distinct indices , and and for Bob to choose two of them and swap.

The solution here was very unexpected and interesting.

To make the problem harder, we generalized the problem to allow for arbitrary connected graphs .

Other Remarks

What if it is not required that is connected?

We did not manage to make much progress on this problem.

Solution

First, we note that we can view a permutation of length as the permutation graph where the vertices are labelled from to and there is a
directed edge for all . This graph is the union of directed cycles. For the rest of this editorial, we will view the permutation as a multiset of its cycle
sizes.

For example,

m = 2
e = m − 1 u ​ =i i v ​ =i i + 1
m = 3 e = m u ​ =i i v ​ =i (i + 1) mod m

m = 4 e = m u ​ =i i v ​ =i (i + 1) mod m

e = m u ​ =i i v ​ =i (i + 1) mod m

e = m − 1
e = m

e > m

G

f(n)
f(n) f(n) ≤ 3n f(n) ≥ 3n− ϵ

f(n)

f(n) ≤ 3n

O(n)
O(m)

3 a b c

G

G

P n G ​P 1 n

i → P ​i i

P = [5, 8, 4, 3, 9, 7, 10, 1, 2, 0, 6]

0
1 2

3

45

6

7 8
9

10

The cycle set of this permutation is .

At this stage, we should note that the score of a permutation is the number of self-loops. That is, the number of s in the cycle set.

Now, let us analyze how swapping elements and changes the cycle set.

Suppose that and are from different cycles of sizes and . Then this operation merges both cycles into a large cycle of size .

Swap a and b

FinalState

a

q

b

p

InitialState

a

p

b

q

In our cycle set, this is equivalent to deleting one occurence of and respectively and then adding one occurence of .

Suppose that and are from the same cycle of size and they are edges apart. Then this operation split the cycle into two smaller cycles of size and
.

Swap a and b

FinalState

a

p

b

q

InitialState

a

q

b

p

In our cycle set, this is equivalent to deleting one occurence of and then adding one occurence of and respectively.

Now, at this stage, it would be helpful to analyze how the score of the permutation changes for each swap.

{1, 2, 8}

1

a b

a b s ​a s ​b s ​ +a s ​b

s ​a s ​b s ​ +a s ​b

a b s d d

s − d

s d s − d

In the case where and are from different cycles, it is not possible for . So the score of the permutation will decrease by one for each
and that is equal to respectively.

In the case where and are from the same cycle, it is not possible for . So the score of the permutation will increase by one for each and
 that is equal to respectively. Note that or only when and are adjacent to each other.

The only time when Bob is forced to pick and such that is when . Otherwise, there is an edge connecting another vertex to
either or . WLOG connects to . Then Bob can pick to swap and instead so that the score of the permutation does not increase.

So let us get the pesky case out of the way first.

Case 2:

Alice can make the score of the permutation is at most moves. This case is trivial because Bob has no choice in which edge to select as there is only
edge. So Alice is allowed to arbitrarily swap any pair of characters in move.

Now, we can assume that now.

We will also split the remaining graphs into the following 4 types:

A: Graphs where there exists a vertex with degree at least
L: Line graphs
C1: Cycle graphs with odd number of vertices
C0: Cycle graphs with even number of vertices

We will start proving the upper bounds for all graph types.

Upper Bounds
In this section, Bob is banned from choosing and such that they form a -cycle. The upper bounds in this variant will not be lower than the original
problem.

By banning such moves from Bob, we can assume that the score will increase by at most one after each move.

So if we can prove that for all permutation with score , Bob can always find a move that does not increase the cost of the permutation, then Alice will not
have a strategy to increase the score of the permutation past .

Lemma 1: If , then Bob can find an edge that does not increase the score.

Proof of lemma 1:

Since , one of must be a self-loop. Suppose is a self-loop. Then there must be an edge in and we can swap
and . Since is a self-loop, and are in different cycles and the cost of the permutation cannot increase (and it will actually decrease).

Because of the lemma 1, if the initial score of the permutation is already greater than , Alice should immediately end the game. Otherwise, she
could try to increase the score to .

This is the only upper bound proof that is shared between graph types. We will now proceed with case work.

We will denote and as the initial score and the final score so that we can give an explicit formula for in terms of for each case.
Very surprisingly, only depends on for most of the graph types.

Using these variables, lemma 1 gives us the inequality

Case A: Graphs where there exists a vertex with degree at least

Bob has a strategy so that the score of the permutation in each move never increases.

Suppose the indices that are chosen by Alice are not all in the same cycle. Then since is connected, we are able to pick some
such that and belong to different cycles. Then Bob will swap and . This move cannot increase the score.

a b s ​ +a s ​ =b 1 s ​a

s ​b 1

s ​a s ​b s = 1 d s −
d 1 d = 1 s − d = 1 a b

a b d = s − d = 1 m = 2 c

a b c a a c

m = 2

m = 2

n n 1
1 ■

m > 2

3

a b 2

k

k

k ≥ n− m + 1

k ≥ n− m + 1 i ​, i ​, … , i ​1 2 m i ​u (u, v) G i ​u

i ​v i ​u iu i ​v ■

n− m + 1
n− m + 1

s ​initial s ​final s ​final s ​initial

s ​final s ​initial

s ​ ≤final ​ ​{
s ​,initial

n− m + 1,
if s ​ ≥ n− m + 1initial

otherwise

3

(i ​, i ​, … , i ​)1 2 m G (u, v)
u v i ​u i ​v

Otherwise, the indices all belong to the same cycle. Since some vertex has , and there are only at most two vertices that
adjacent to in the permutation graph. Pick as any vertex that is not adjacent to and swap and .

Case L: Line Graphs

The inequality implied by lemma 1 is actually the tightest possible.

Case C1: Cycle graph with odd number of vertices

WLOG the edges of are

Let be the number of odd cycles in the cycle set initially.

Firstly, we will show that Bob has a strategy to never increase the number of odd cycles in the cycle set. This is important because self-loops are odd
cycles themselves. So if Bob always ensures that the number of odd cycles in the cycle never increases, we have the bound .

Suppose the indices Alice chose such that they are not all in the same cycle. Then since is connected, we are able to pick some
such that and belong to different cycles. Then Bob will swap and . Since this move merges two cycles, it cannot increase the number of odd
cycles.

Otherwise, the indices all belong to the same cycle. We will delete a cycle of size and add cycles of sizes and . The only case
where the number of odd cycles increase is when is even and is odd. We will prove that when all indices Alice chooses belongs to an even cycle, we
can split the graph with even .

The proof is a simple parity argument. Since the cycle in the permutation is even, we can bicolor it with black and white. Now the vertices of are also
bicolored based on which vertex it is assign to in . We want to choose a pair which has even , which corresponds to adjacent vertices with
the same color. But it is impossible for all adjacent vertices to have different colors, or else we can bicolor , where is odd. But this is clearly false.

Now let be the minimum number such that the sum of sizes of odd cycles and all even cycles in the cycle set is at least . We actually have a
stronger bound of .

As we have seen previously, if belong to different cycles, Bob will not increase the score. If belongs to a single even
cycle, then Bob can split it into two smaller even cycles. So the only way that Alice can force Bob to increase the score is when belongs to
a single odd cycle.

Now, before Alice is able to play a turn where belongs to a single odd cycle, she will only be able to play moves of the previous two forms.

Let's see what Alice can do with the previous two moves:

1. Join an even and odd cycle
2. Join two even cycles
3. Join two odd cycles
4. Split an even cycle into two even cycles

Moves (2) and (4) will not change .
For move (1), cannot decrease. We can show by splitting into cases.

Case 1: the odd cycle is part of the cycles. No change is made to the choice of cycles, remains the same
Case 2: the odd cycle was not part of the cycles, and after joining it becomes larger than the original -th largest odd cycle. Let the size of the even
cycle that was joined be . The sum of sizes of even cycles decreases by , and the sum of sizes of the largest odd cycles increases by at
most , hence the new value of cannot be smaller than its original value.
Case 3: the odd cycle was not part of the cycles, and after joining it still is not. The sum of sizes of the odd cycles remains the same, but the sum
of sizes of all even cycles decreases. will either stay the same or increase

For move (3), will decrease by at most , and the total number of odd cycles will decrease by .

When belongs to a single odd cycle, .
For to reach its final value, move (3) has to be done at least times, which will decrease the number of odd cycles by , hence resulting in the
final score of .

(i ​, i ​, … , i ​)1 2 m u deg(u) ≥ 3
u v u i ​u i ​v

s ​ ≤final s ​initial

s ​ ≤final ​ ​{
s ​,initial

n− m + 1,
if s ​ ≥ n− m + 1initial

otherwise

G {(0, 1), (1, 2), … , (m − 2,m − 1), (m − 1, 0)}

O

s ​ ≤final O

(i ​, i ​, … , i ​)1 2 m G (u, v)
u v i ​u i ​v

(i ​, i ​, … , i ​)1 2 m s d s − d

s d

d

G

(i ​, i ​, … , i ​)1 2 m d

C ​n n

S S m

s ​ ≤final O − 2⌊ ​⌋2
S

(i ​, i ​, … , i ​)1 2 m (i ​, i ​, … , i ​)1 2 m

(i ​, i ​, … , i ​)1 2 m

(i ​, i ​, … , i ​)1 2 m

S

S 3

S S S

S S

e e S − 1
e S

S S

S

S 2 2

(i ​, i ​, … , i ​)1 2 m S ≤ 1
S ⌊ ​⌋2

S 2⌊ ​⌋2
S

O − 2⌊ ​⌋2
S

Case C0: Cycle graph with even number of vertices

We will show that if , then Bob has a strategy to not increase the score of the permutation.

If Alice picks , then and must be adjacent to each other. If they were not, then Bob will choose those pair and the score will
not increase.

This means that for the score to increase, there must be a cycle of size . But we have that , so there are exactly vertices that
are not self-loops. If out of those vertices, are used to form a cycle of size , then the remaining vertex will only be a self-loop, which
contradicts . So a cycle of size existing is not possible in the first place.

Lower Bounds
Time to prove that all inequalities in the previous section are tight. We will explicitly construct a possible strategy for Alice, where each strategy uses at
most moves.

Case A: Graphs where there exists a vertex with degree at least

Alice simply ends the game on the first move.

Therefore, in at most moves.

Case big:

Alice simply ends the game on the first move.

Therefore, in at most moves.

Case L: is a line and

Suppose the current non self-loop cycles are . Then Alice will pick the first
elements of these in order. i.e. .

Then each operation Bob can do would correspond to swapping adjacent elements or swapping elements from different cycles. Let denote the current
number of cycles.

In the former case, the score increases by one and increases by one too. In the latter case, decreases by one.

Since in the final state where the score is , we have , it is clear that the number of moves required is .

Therefore, in at most moves.

Case C0 edge case: is an even cycle and

Suppose the non self-loop cycles are .

In this case, . So in each move when Alice picks the first elements of these in order, she actually picks all of the non-self-
loops, that is .

Then again, each operation Bob can do would correspond to swapping adjacent elements or swapping elements from different cycles.

From the previous analysis, the number of moves required is .

s ​ ≤final ​ ​{
s ​,initial

O − 2⌊ ​⌋,2
S

if s ​ ≥ n− m − 1initial

otherwise

k = n− m − 1

(i ​, i ​, … , i ​)1 2 m i ​k i ​k mod m+1

m k = n− m − 1 m + 1
m + 1 m m

k = n− m − 1 m + 1

s ​ ≤final ​ ​ ​

⎩
⎨

⎧s ​,initial

n− m + 1,
n− m − 1,

if s ​ ≥ n− m + 1initial

if s ​ = n− minitial

otherwise

3n

3

s ​ ≥final s ​initial 3n

s ​ ≥initial n− m+ 1

s ​ ≥final s ​initial 3n

G s ​ <initial n− m+ 1

(c ​, c ​, … , c ​), (c ​, c ​, … , c ​), … , (c ​, c ​, … , c ​)1,1 1,2 1,s ​1 2,1 2,2 2,s ​2 k,1 k,2 k,s ​k
m

c ​, c ​, … , c ​, c ​, c ​, … , c ​, … , c , c ​, … , c ​1,1 1,2 1,s ​1 2,1 2,2 2,s ​2 i,1 i,2 i,j

C

C C

n− m + 1 C ≥ n− m + 2 C ​ −initial C ​ +final 2

​ ​

C ​ − C ​ + 2 ⋅ (score ​ − score ​)initial final final initial ≤ n− (n− m + 2) + 2 ⋅ (n− m + 1 − 0)

= m − 2 + 2(n− m + 1)

= 2n− m ≤ 3n

(1)

(2)

(3)

s ​ ≥final n− m + 1 3n

G s ​ =initial n− m

(c ​, c ​, … , c ​), (c ​, c ​, … , c ​), … , (c ​, c ​, … , c ​)1,1 1,2 1,s ​1 2,1 2,2 2,s ​2 k,1 k,2 k,s ​k

s ​ +1 s ​ +2 … + s ​ =k m m

c ​, c ​, … , c ​, c ​, c ​, … , c ​, … , c ​, c ​, … , c ​1,1 1,2 1,s ​1 2,1 2,2 2,s ​2 k,1 k,2 k,s ​k

≤ 3n

Therefore, in at most moves.

Case C1: is an odd cycle and

Again, define as the minimum number such that the sum of sizes of odd cycles and all even cycles in the cycle set is at least .

The following is a brief overview of our strategy:

Phase 1: Make a cycle of size at least .
Phase 2: Produce a self-loop from each odd cycle.

Do note that in any phase of our algorithm it is possible that there will already be at least counts of . In that case, we will terminate our
algorithm.

Furthermore, let be the minimum number of cycles such that of these cycles are odd and the sum of cycles is at least . Also, let be the number of
self-loops.

For phase 1, let the cycles be the cycles such that out of of them are odd and
the sum of cycle sizes at least . As above, Alice will pick the first elements of these in order. i.e.

.

Let us analyze the effect of each possible case on , and .

If Bob merges two even cycles, and remains unchained. decreases by . remains unchanged.
If Bob merges one even and one odd cycle, and remains unchained while decreases by . remains unchanged.
If Bob merges two odd cycles, decreases by while decreases by . Therefore, is still constant. decreases by . remains
unchanged.
If Bob splits an even cycle of size into . increases by one while increases by at most . will not decrease. increases by
at most . increases by .
If Bob splits an odd cycle of size into . decreases by one while decreases by at most . will not decrease. increases by
at most . increases by .

In all cases, will not decrease.

In the first cases, decreases by while remains unchanged.

In the last cases, increases by at most while increases by .

In both cases, decreases by at least .

Therefore, the numeber of moves for phase 1 is bounded by .

Since , the number of moves is bounded by .

For phase 2, observe that if we have a cycle of size , then we can force Bob to split it into cycles of sizes or .

It is sufficient to find a sequence of distinct integers between and (inclusive) such that or
.

The construction works.

Therefore, if we have a odd cycle of size , we can produce a self-loop from it using at most moves.

Now, we will handle the small odd cycles.

Since we have gone through phase , we definitely will have a cycle of size . If this cycle was odd size, we would have used the above process to
obtain an even cycle of size at least too. Therefore, we can be sure that we would have an even cycle of size at least at this stage.

For each odd cycle of size , we will first join the odd cycle with our even cycle it using move. Then using the move above, we will produce a self-
loop along with an even cycle of size using additional moves.

Therefore, the number of moves in total is bounded by .

Therefore, the total number of moves is . Now, is at most the number of odd cycles of size greater than .
This is at most .

s ​ ≥final n− m + 1 3n

G s ​ <initial n− m+ 1

S S m

m

O − ⌊ ​⌋2
S 1

T S m X

(c ​, c ​, … , c ​), (c ​, c ​, … , c ​), … , (c ​, c ​, … , c ​)1,1 1,2 1,s ​1 2,1 2,2 2,s ​2 k,1 k,2 k,s ​k
T S

m m

c ​, c ​, … , c ​, c ​, c ​, … , c ​, … , c ​, c ​, … , c ​1,1 1,2 1,s ​1 2,1 2,2 2,s ​2 i,1 i,2 i,j

O − ⌊ ​⌋2
S T X

O S T 1 X

O S T 1 X

O 2 S 2 O − 2⌊ ​⌋2
S T 1 X

s [1, s − 1] O S 1 O − 2⌊ ​⌋2
S T

1 X 1
s [1, s − 1] O S 2 O − 2⌊ ​⌋2

S T

1 X 1

O − 2⌊ ​⌋2
S

3 T 1 X

2 T 1 X 1

ΔT − 2ΔX 1

T ​ −final T ​ +initial 2 ⋅ (X ​ −final X ​)initial

T ≤ m 2 ⋅ (X ​ −final X ​) +initial m

s > m [1, s − 1] [2, s − 2]

x ​,x ​, … ,x ​1 2 m 1 s ∣x ​ −i x ​∣ =i mod n+1 1 ∣x ​ −i
x ​∣ =i mod n+1 2

x = [1, 3, 5, … ,m,m − 1,m − 3, … , 2]

s ≥ m ​ +2
s−m 1 ≤ m

1 e ≥ m

m − 1 m − 1

s ≥ 3 1
e ≥′ m − 1 ​ +2

e+s−e′
1

​ +2
n 2(X ​ −final X ​)initial

2(X ​ −final X ​) +initial ​ +2
n m X ​ −final X ​initial 1

​3
n

So the total number of moves is bounded by .

Case C0: is an even cycle and

Observe that if we have a cycle of size , then we can force Bob to split it into cycles of sizes or .

It is sufficient to find a sequence of distinct integers between and (inclusive) such that or
.

Although since is small, it is possible to write dp. There is a simple construction.

The following is pseudocode to construct :

x=[]

curr=1

x.add(curr)

for i in 1..m/2-1:

 if (curr mod (2(s-m)-2) == 1): curr += s-m

 else: curr++

 x.add(curr)

curr++

x.add(curr)

curr -= s-m

x.add(curr)

for i in 1..m/2-2:

 if (curr mid (2(s-m)-2) == 2): curr -= s-m

 else: curr--

 x.add(curr)

Below are illustrations of its output.

For :

1 2 3 4

1 2 3 4 5 6

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

For :

2 ⋅ ​ +3
n

​ +2
n m ≤ 3n

s ​ ≥final O − 2⌊ ​⌋
2
S

G s ​ <initial n− m+ 1

s ≥ m + 2 [1, s − 1] [m, s − m]

x ​,x ​, … ,x ​1 2 m 1 s ∣x ​ −i x ​∣ =i mod n+1 1 ∣x ​ −i
x ​∣ =i mod n+1 s − m

m O(m)

x ​,x ​, … ,x ​1 2 m

s − m = 2

s − m = 3

1 2 43 5

1 2 43 5 6

1 2 43 5 6 87 9

1 2 43 5 6 87 9 10

For :

1 2 53 4 6

1 2 53 4 6 7

1 2 53 4 6 7 8

1 2 53 4 6 7 8 119 10 12

The following is a brief overview of our strategy:

Phase 1: Make the cycle set , where and .
Phase 2: Make the cycle set , where .
Phase 3: Perform more operations until there are at least counts of .

Do note that in any phase of our algorithm it is possible that there will already be at least counts of . In that case, we will terminate our
algorithm.

For phase 1, Alice will use the following algorithm:

1. If there is a cycle of size exactly , Alice will force Bob to do .
2. If there isn't a cycle of size at least , Alice will try to make a cycle of size at least by combining cycles of size at least together. Note

that Alice can only choose a set of cycles whose sum is at least and then force Bob to merge two of these cycles or split one of the cycles of size
into .

3. If there is a cycle of size at least , Alice can use the above construction to force Bob to split it into or .
4. Otherwise, we have completed phase 1 and the cycle set is of the form , where and .

Let us bound the number of moves Alice will make for phase 1.

s − m = 4

T ∪ {2, … , 2, 1, … , 1} min(T) ≥ 3 T ≤∑ m + 1
{s, 1, … , 1} s ≤ 2m − 1

n− m − 1 1

n− m − 1 1

m [m] → [1,m − 1]
m + 2 m + 2 3

m s

[1, s − 1]
s ≥ m + 2 [1, s − 1] [m, s − m]

T ∪ {2, … , 2, 1, … , 1} min(T) ≥ 3 T ≤∑ m + 1

Let be the minimum number of cycles of length at least so that their sum is at least
. If is undefined by this definition, we will define it as as convention (it will make sense in our analysis).

Furthermore, let be the number of self-loops.

The possible cases are given by:

move 1 move 2 move 2, 3move 3

move 1

[m] → [1,m-1] [a,b] → [a+b] [s] → [1,s-1][s] → [m,s-m]

[s] → [1,m-1,s-m]
1 move
ΔX = 1
ΔS = 0

1 move
ΔX = 0
ΔS = -1

1 move
ΔX = 1

0 ≤ ΔS ≤ 1

2 moves
ΔX = 1

0 ≤ ΔS ≤ 1

start

In all cases, increases by at least the number of moves.

In the worst case, the number of moves for phase 1 is at most by .

Since , it is clear that this is at most .

For phase 2, Alice will use the following algorithm:

1. If there is a cycle of size exactly , Alice will force Bob to split into .
2. If there is a cycle of size exactly , Alice will force Bob to split to either or .
3. If is a subset of the cycle set, Alice will force Bob to split to either or .
4. If is a subset of the cycle set, Alice can force Bob to change into or .
5. If there isn't a cycle of size at least , Alice will try to make a cycle of size at least by combining cycles of size at least together. Note

that Alice can only choose a set of cycles whose sum is at least and then force Bob to merge two of these cycles or split one of the cycles of size
into .

6. Otherwise, we have completed phase 2 and the cycle set is of the form , where .

Do note that the maximum cycle size will never exceed following our algorithm.

Let be the minimum number of cycles of length at least so that their sum is at least
. If is undefined by this definition, we will define it as as convention (it will make sense in our analysis).

Furthermore, let be the number of self-loops.

The possible cases are given by:

S 3
m + 2 S 1

X

3X − S

3 ⋅ (X ​ −final X ​) −initial (S ​ −final S ​)initial

1 ≤ S ≤ ⌈ ​⌉3
m+2 3 ⋅ (X ​ −final X ​) +initial ⌈ ​⌉ −3

m+2 1

m m [1,m − 1]
2m 2m [1, 2m − 1] [m,m]

[2m − 1, 2] 2m − 1 [1, 2m − 2] [m − 1,m]
[m − 1,m − 1, 2] [m − 1,m − 1] [2m − 2] [1,m − 2,m − 1]

2m − 1 2m − 1 2
m s

[1, s − 1]
{s, 1, … , 1} s ≤ 2m − 1

2m

S 2
2m − 1 S 1

X

move 1 move 2move 2

move 1

move 1

move 5move 5

[m] → [1,m-1] [2m] → [1,2m-1][2m] → [m,m]

[2m] → [1,m-1,m]

[2m] → [1,1,m-1,m-1]

[a,b] → [a+b][s] → [1,s-1]

1 move
ΔX = 1

0 ≤ ΔS ≤ 1

1 move
ΔX = 0
ΔS = -1

3 moves
ΔX = 2
ΔS = 2

start

move 4 move 4

move 5 move 5

move 2move 2

move 1

move 1

[m-1,m-1,2] → [2m-2,2]
[m-1,m-1,2] → [1,m-2,m-

1,2]

[m-1,m-1,2] → [2m] [m-1,m-1,2] → [1,2m-3,2]

[m-1,m-1,2] → [1,2m-1][m-1,m-1,2] → [m,m]

[m-1,m-1,2] -> [1,m-1,m]

[m-1,m-1,2] -> [1,1,m-1,m-
1]

1 move
ΔX = 1
ΔS = 0

5 moves
ΔX = 2
ΔS = 0

3 moves
ΔX = 1
ΔS = -2

2 moves
ΔX = 1
ΔS = -1

start

move 3move 3

move 1

move 4 move 4

move 5 move 5

move 2move 2

move 1

move 1

[2m-1,2] → [1,2m-2,2][2m-1,2] → [m-1,m,2]

[2m-1,2] → [1,m-1,m-1,2]

[2m-1,2] → [1,2m-2,2] [2m-1,2] → [1,1,m-2,m-1,2]

[2m-1,2] → [1,2m] [2m-1,2] → [1,1,2m-3,2]

[2m-1,2] → [1,1,2m-1][2m-1,2] → [1,m,m]

[2m-1,2] -> [1,1,m-1,m]

[2m-1,2] -> [1,1,1,m-1,m-1]

3 moves
ΔX = 2
ΔS = 2

7 moves
ΔX = 3
ΔS = 2

5 moves
ΔX = 2
ΔS = 0

4 moves
ΔX = 2
ΔS = 1

1 move
ΔX = 1
ΔS = 1

start

In all cases, increases by at least the number of moves.

In the worst case, the number of moves for phase 2 is at most .

Since , it is clear that this is at most

For phase 3, Alice will use the following algorithm:

3X − S

3 ⋅ (X ​ −final X ​) −initial (S ​ −final S ​)initial

1 ≤ S ≤ ⌈ ​⌉2
2m−1 3 ⋅ (X ​ −final X ​) +initial ⌈ ​⌉ −2

2m−1 1

Let be the cycle set after removing all the s.

1. If is in , split it into .
2. If where , then Alice will force Bob to split it into or .
3. If where , try to combine . This can result in or or . Note that in

the second case, it is possible that , so would actually be only .
4. Otherwise, the sum of is at most . And we have reached the maximum score possible.

The possible cases are given by:

move 1 move 2move 2

move 1

move 3 move 3 move 3

[m] → [m-1] [s] → [s-1][s] → [m,s-m]

[s] → [m-1,s-m]

[a,b] → [a+b] [a,b] → [a-1,b] [a,b] → [a,b-1]

1 move
ΔX = 1

Δ|S'| = 0

2 moves
ΔX = 1

Δ|S'| = 1

1 move
ΔX = 0

Δ|S'| = -1

1 move
ΔX = 1

-1 ≤ Δ|S'| ≤ 0

start

In all cases, increases by at least the number of moves.

In the worst case, the number of moves for phase 3 is at most .

Since , it is clear that this is at most .

In summary, this strategy uses at most:

 moves in phase 1.
 moves in phase 2.

 moves in phase 3.

Therefore, in total we use at most moves.

Note that , so , as required.

Therefore, in at most moves.

Summary
The following are the final scores for each case

2:

A: Graphs where there exists a vertex with degree at least

S ′ 1

m S ′ [m − 1]
S =′ [s] s ≥ m + 2 [s − 1] [m, s − m]
S =′ {a, b} a+ b ≥ m + 2 a+ b S =′ {a+ b} S =′ {a− 1, b} S =′ {a, b− 1}

a− 1 = 1 S ′ {b}
S ′ m + 1

3X − ∣S ∣′

3 ⋅ (X ​ −final X ​) −initial (∣S ∣ ​ −′
final ∣S ∣ ​)′

initial

1 ≤ ∣S ∣ ≤′ 2 3 ⋅ (X ​ −final X ​) +initial 1

3 ⋅ (X ​ −final X ​) +initial ⌈ ⌉ −3
m+2 1

3 ⋅ (X ​ −final X ​) +initial ⌈ ⌉ −2
2m−1 1

3 ⋅ (X ​ −final X ​) +initial 1

3 ⋅ (X ​ −final X ​) +initial ⌈ ​⌉ +3
m+2 ⌈ ​⌉ −2

2m−1 1 ≤ 3 ⋅ (X ​ −final X ​) +initial 3(m − 1)

0 ≤ X ≤ n− m + 1 (X ​ −final X ​) +initial 3(m − 1) ≤ 3(n− m + 1) + 3(m − 1) = 3n

s ​ ≥final n− m + 1 3n

m = 2

s ​ =final n

3

s ​ =final s ​initial

L: Line graphs

C1: Cycle graphs with odd number of vertices

Let be the number of odd cycles in the cycle set initially and be the minimum number such that the sum of sizes of odd cycles and all even cycles
in the cycle set is at least .

C0: Cycle graphs with even number of vertices

Proof that at least moves are required for Alice to get the maximum score

We will consider the case where is an even cycle of size .

Firstly, our only restriction on Bob is that he will never make a move that creates a self-loop whenever possible. That means the only way for Alice to create
self-loops is to split a cycle of size into cycles of sizes and .

Other than the above restriction, we can pretend that Alice is allowed to force Bob to perform any moves that she likes.

Now, consider the case where the original cycle set contains cycles of size and one cycle of size . Then we will show that the minimum
number of moves to reach a state where the cycle set contains self-loops and one cycle of size is .

Note that it is possible that there might exist an optimal sequence of moves using that produces self-loops but the rest of the vertices may
not be arranged into a single cycle of size .

But Alice can use extra moves to combine the rest of the cycles into one cycle of size . Therefore, we have that .

The total size of all cycles is .

Therefore, .

It is clear that for any by choosing sufficiently large and .

The following is the proof that we need at least moves.

So we consider the cycle set , the following is the move that Alice can perform:

Choose different . Then delete both and from and add into .
Choose such that then delete from and add both and into .
Delete from and add both and into .

We will write the above in the following notation:

.
, .

.

Note that we want to transform .

Since the only move that produces self-loops is , we need to perform that move times.

So it is sufficient to show that we need at least moves to perform .

Now, let us not care about the restriction that when we do the move . So the valid moves is simply:

.

s ​ =final ​ ​{
s ​,initial

n− m + 1,
if s ​ ≥ n− m + 1initial

otherwise

O S S

m

s ​ =final ​ ​{
s ​,initial

O − 2⌊ ​⌋,2
S

if s ​ ≥ n− m − 1initial

otherwise

s ​ =final ​ ​ ​

⎩
⎨

⎧s ​,initial

n− m + 1,
n− m − 1,

if s ​ ≥ n− m + 1initial

if s ​ = n− minitial

otherwise

3n

G m

m m − 1 1

km m − 1 m + 1
(m − 1)mk m + 1 (3m − 4)mk

O (m − 1)mk
m + 1

m m + 1 O + m ≥ (3m − 4)mk

n = (m − 1)mk + m + 1

​ ≥
n
O

​(m−1)mk+m+1
(3m−4)mk−m

​ ≥
n
O 3 − ϵ ϵ > 0 m k

(3m − 4)mk

C

i, j ∈ C i j C i + j C

i + j ∈ C i, j = 1 i + j C i j C

m C 1 m − 1 C

[i, j] → [i + j]
[i + j] → [i, j] i, j = 1
[m] → [1,m − 1]

[m − 1] ⋅ km → [1] ⋅ (m − 1)mk

[m] → [m − 1, 1] (m − 1)mk

(2m − 3)mk [m − 1] ⋅m k →2 [m] ⋅ (m − 1)mk

i, j = 1 [i + j] → [i, j]

[i, j] → [i + j]

.

Suppose we did some operations of the form to get the overall effect of .

For two multisets and with the same sum, define as the minimum number of "cuts" you have to do both and until they become the
same multiset. Here, a "cut" means .

Then, a lower bound on the minimum of operations is clearly . An operation corresponds to a cut in and an operation
 corresponds to a cut in .

For example, suppose that we wants to do and we performed the following moves:

 (,)
 (,)
 (,)

Then, and .

Lemma 2: .

Lemma 3: .

From lemmas 2 and 3 (proven below), it is clear that . Therefore, we need at least moves to perform
 and therefore need at least moves to perform .

Although for the purposes of our prove, we only needed to show , the other direction was trivial.

Proof of lemma 2:

First, let us show that .

For each of the occurence of on , it must be cut at least once, or else it cannot possibly match with anything after performing
some cuts to as all elements will have size of at most , since they can only be formed by cutting .

Now, the total elements of the resulting multisets must be same. After performing a cut on each of the occurences of on , it will
be split into elements.

For to have at elements, we must perform at least cuts on it.

Therefore, we must perform at least cuts.

It is also not too difficult to find a construction using exactly cuts, proving .

For each of the occurence of in , we will cut it into and using cuts.

Then for only occurences of in , we will use cuts each to cut it into , using cuts total.

Therefore, we have cut both arguments into using a total of exactly cuts.

Proof of lemma 3:

It is clear that . Because any cutting scheme of works for by not cutting .

Now, to prove that , we will proceed by contradiction.

Suppose we have a cutting scheme that uses the least moves over all . Here, we label the different as and for clarity.

If some parts of gets matched with , in the above cutting scheme, where the matching parts sum to , we can find a cutting scheme
 that uses strictly less moves, contradicting our assumption that our cutting scheme uses the least moves. So must hold.

Therefore, in our cutting scheme, and must be matched with some cuts of and respectively.

Suppose and is cut into and pieces respectively. Then the matching parts of and are split and parts respectively. We will denote these
parts as and .

 and has and respectively. But we can just perform at most and cuts on and respectively and none on instead so that
we can conclude that our cutting scheme must use as many cuts as .

[i + j] → [i, j]

a ​ →i b ​i [m − 1] ⋅ km → [m] ⋅ (m − 1)mk

S T F(S,T) S T

[i + j] → [i, j]

F(a, b)⋃ ⋃ [i, j] → [i + j] b [i +
j] → [i, j] a

[3, 5] → [1, 1, 6]

[3, 5] → [3, 2, 3] a ​ =1 [5] b ​ =1 [2, 3]
[3, 2, 3] → [2, 6] a ​ =2 [3, 3] b ​ =2 [6]
[2, 6] → [1, 1, 6] a ​ =3 [2] b ​ =3 [1, 1]

a =⋃ [5, 3, 3, 2] b =⋃ [2, 3, 6, 1, 1]

F([n− 1] ⋅ cn, [n] ⋅ c(n− 1)) = c(2n− 3)

F(S,T) = F(S ∪ {x},T ∪ {x})

F(a, b) =⋃ ⋃ k(2n− 3) (2m − 3)k [m − 1] ⋅
m k →2 [m] ⋅ (m − 1)mk (3m − 4)k [m − 1] ⋅ km → [1] ⋅ (m − 1)mk

F([n− 1] ⋅ cn, [n] ⋅ c(n− 1)) ≥ c(2n− 3)

F([n− 1] ⋅ cn, [n] ⋅ c(n− 1)) ≥ c(2n− 3)

c(n− 1) [n] [n] ⋅ c(n− 1)
[n− 1] ⋅ cn n− 1 [n− 1]

c(n− 1) n [n] ⋅ c(n− 1)
c(2n− 2)

[n− 1] ⋅ cn c(2n− 2) c(n− 2)

c(2n− 3)

c(2n− 3) F([n− 1] ⋅ cn, [n] ⋅ c(n− 1)) ≤ c(2n− 3)

c(n− 1) n [n] ⋅ c(n− 1) n− 1 1 c(n− 1)

c n− 1 [n− 1] ⋅ cn n− 2 [1] ⋅ (n− 1) c(n− 2)

[n− 1] ⋅ c(n− 1) + [1] ⋅ (n− 1) c(2n− 3) ■

F(S,T) ≥ F(S ∪ {x},T ∪ {x}) (S,T) (S ∪ {x},T ∪ {x}) x

F(S,T) ≤ F(S ∪ {x},T ∪ {x})

(S ∪ {x ​},T ∪1 {x ​})2 x x x ​1 x ​2

x ​1 x ​2 y (S ∪ {x ​ −1

y},T ∪ {x ​ −2 y}) y = 0

x ​1 x ​2 T S

x ​1 x ​2 p q T S p q

t ​, t ​, … , t ​1 2 p s ​, s ​, … , s ​1 2 q

x ​1 x ​2 p − 1 q − 1 p − 1 q − 1 s t x

F(S,T)

Here is how we will perform our cuts on and . We simply line them up. If there is a cut on one side, then we will also cut the other side.

For example, if and . Then we arrange them as follows:

3 1 4 1 5

2 8 1 2 1

Then we will make cuts to both arrays so that they become .

s t

s = [3, 1, 4, 1, 5] t = [2, 8, 1, 2, 1]

[2, 1, 1, 4, 1, 1, 1, 2, 1] ■

